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Abstract - So many systems development methods have been introduced in the last decade that one can talk about a 
“methodology jungle”. To aid the method developers and evaluators in fighting their way through this jungle, we 
propose a systematic approach for measuring properties of methods. We describe two sets of metrics which measure the 
complexity of single diagram techniques, and of complete systems development methods. The proposed metrics 
provide a relatively fast and simple way to analyse the descriptive capabilities of a technique or method. When 
accompanied with other selection criteria, the metrics can be used for estimating the relative complexity of a technique 
compared to others. To demonstrate the applicability of the metrics, we have applied them to 36 techniques and I1 
methods 
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1. INTRODUCTION 

Recent years have witnessed the appearance of new systems development paradigms and methods. 
Examples of these are object-oriented analysis and design methods, and business process re-engineering 
methods. However, we feel that there is a need for improvement in the analysis of these methods and in 
understanding their use and functionality. Although some attempts have been made to compare existing 
methods (e.g. object-oriented methods [lo, 17, 251 and a number of general comparisons in the CRIS papers 
[32, 33]), the studies lack rigour and a sound conceptual foundation, and are mostly based on ad hoc feature 
analysis techniques. Some recent attempts [23, 401 have proposed more systematic approaches, based on a 
common formal metamodelling language to describe methods. These hold the promise of a more systematic 
and analytic way to compare methods; however, they are still mainly used for making tabular comparisons 
of methods’ parts and properties. 
Alongside these patterns there is a lack of CASE tools to support these methods. Brinkkemper et al. [6] and 
Tolvanen and Lyytinen [44] have tackled the problem of adaptation of methods by metamodelling. The 
rapid growth of the number of both methods and their support environments has led to the proposition of a 
new area called Computer Aided Method Engineering, or CAME for short [29, 221. Method engineering is 
defined here as the engineering discipline to design, construct, and adapt methods, techniques and tools for 
the development of information systems [5 1. 

We claim that by using a metamodel and a CAME environment for method engineering, we can 
achieve two goals simultaneously: first, we can compare the methods analytically, and second, we can try 
out these methods on a platform that supports the storage and representation of descrip tions made with this 
method. Research in this area has mainly concentrated on constructing method modelling (or 
metamodelling) languages [7, 441 or building support environments for them [ 11, 38, 411. Earlier attempts 
to use a common metamodelling language for method comparison have mainly concentrated upon mapping 
methods onto some “supermethod” [3 11 or comparing models of methods by identifying their common parts 
[23]. Instead of these approaches we now try to find quantitative measures of techniques’ properties that can 
be computed without human judgement. 

In this paper, we try to establish an approach for method measurement which is systematic, automatic 
and easy to use. We propose a metric approach and present a suite of metrics for methods. These metrics 
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measure the complexity of the method or technique. The metrics are proposed on the basis of metamodels. 
We define a metamodel to be a conceptual model of a development method. Metamodels provide a model 
of the syntactical structure (or representation) of the specification technique. 

The relative complexity of methods and techniques based on metamodels is significant because it can 
be expected to affect the learnability and ease of use of a method. A metamodel has a type-instance 
relationship with the actual application models, a simple metamodel generally leading to a more complex 
application model. Or said differently, a metamodel models the expressive power of the specification 
technique, by representing its vocabulary (i.e. the concepts and properties) and admissible constructs (i.e. 
the relationships and the roles). There should be a negative correlation between the complexity of the 
method and the size of the application models, if the method’s conceptual complexity does indeed lead to 
greater expressive power [31]. Consequently, a simple method (metamodel) may be easy to learn as such, 
but may be more laborous to apply when leading to more complex application models. Furthermore, as the 
metamodels are used to generate model editors for a CASE tool, the metamodels serve also as an indication 
of the functional complexity of the generated editor. So, generally speaking, the complexity of a method is 
related to the learnability and ease of use of the method, even though this relationship may be complex. 

Or said differently, the metamodels model the expressive power of the specification technique, by 
representing its vocabulary (i.e. the concepts and properties) and admissible constructs (i.e. the relationships 
and the roles). Furthermore, as the metamodels are used to generate model editors for a CASE tool, the 
metamodels serve also as an indication of the functional complexity of the generated editor. So, generally 
speaking, the expressive power of a specification technique is related to the learnability of the technique. 
We therefore claim that there exists an intrisic dependency between the metamodels and the learnability of 
the specification technique. Whether this dependency can be formulated as “the more complex a 
metamodel, the harder the method is to learn” is not a statement we will make based on our results. This 
remains to be investigate in future empirical research. 

The metrics can be used for at least two purposes: first, by method engineers to check the method 
properties, and second by method users to aid in the selection of methods, based on their measurable 
properties. The first aspect should be emphasized at the current status of method development, as we see a 
rapid appearance of new method categories, such as object-oriented [4, 9, 12, 13, 35, 441 or business 
engineering methods [14]. There is a clear push to develop new methods and consequently the method 
developers are falling over themselves to come up with their own developments and variants of methods in 
the “fashionable” categories. 

The second aspect is more problematic, because the metrics by themselves cannot be used to judge the 
“goodness” or the appropriateness for the task of the method, but rather should be used combined with 
approaches such as metamodel hierarchies [31] and classification frameworks [24]. 

To test our claims we apply the proposed metrics over a variety of well-known methods. As a by- 
product, a set of tools for analysing methods within the MetaEdit CAME tool are introduced. The 
adaptation of the metrics into other CAME (and CASE) environments should be straightforward. 

This paper is organized as follows. In the next Section, we present the metamodelling language used to 
describe methods. In Section 3, we present the proposed metrics, and in Section 4 these metrics are applied 
to a number of techniques and methods in the MetaEdit environment. The last Section discusses the results 
and proposes some future directions for research. The appendices contain tables and graphs with the values 
of the metrics for the methods in Section 4. 

2. METHODS AND THE METHOD ENGINEERING ENVIRONMENT 

Techniques of interest here consist of traditional graphical formalisms, such as Object Diagrams and 
Object State Diagrams. These techniques describe the object systems by objects and their relationships. In 
many cases the relationships and objects can have attributes or properties. The techniques usually describe 
only one aspect of an object system (such as data flows or state changes etc.). There is also a need to apply 
multiple views to describe the object system. In those cases we use organised sets of techniques, called 
methods. Methods contain several techniques, their interconnections and the use of these techniques [5], but 
we currently limit our investigation to considering methods as simple compositions of the technique 
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components. An example of a method is the Object Modelling Technique [35] which consists of several 
techniques such as Class Diagrams, Data Flow Diagrams and Object State Diagrams. See appendix 1 for the 
list of methods and techniques considered in this investigation. 

To be able to compare and analyse techniques, we describe their structure using one common language 
to define the metamodels of the methods. We use here the OPRR (Object, Property, Relationship, Role) 
method modelling language, proposed by Welke [45] and enhanced by Smolander [38] to model the 
techniques and methods. The use of one method modelling language gives us a basis to compare the 
properties of techniques, and it provides a common background for the formulation of metrics. 

It is important to notice, however, that there are a few factors that can bias the results. First, the 
precision of the method description is dependent on the quality of the technique’s description in the 
textbook. Some authors present detailed formal descriptions of their techniques, and others define their 
techniques more vaguely. Secondly, the experience and personal preferences of the method modeller affect 
the model. For example, a given concept might be metamodelled either as a property or as a relationship. In 
this particular case all of the techniques have been modelled by one experienced method engineer, and we 
can thus expect that they have been modelled with a consistent style. 

In the following sections we describe the CAME environment, the static structure and the concepts of 
OPRR and develop a model of OMT Class Diagrams [35.] using OPRR. 

2.1. The CAME Environment 

We have used the method engineering environment of the MetaEdit CASE shell, which is based on 
OPRR [38, 361. MetaEdit supports the development of method models by allowing their graphical 
description using OPRR and by translating the method descriptions automatically into diagram editors 
within the CASE shell. It has been used to develop new methods for MetaEdit itself. We have currently 
implemented a collection of nearly forty development techniques [34]. All of the metamodels have been 
developed by one person. The ability to try out modelled methods in the diagram editor in MetaEdit was 
essential in this research project, as this ensured thet the metamodels used for evaluation of the metrics 
were complete and correct. 

To test the metrics proposed in this paper, and to demonstrate the applicability of automating metrics 
computation procedures, we have implemented a metrics calculation package using MetaEdit’s report 
definition capabilities. A list of techniques and methods, together with the obtained metrics values, is to be 
found in Appendices 1 and 3. The metrics computations and graphical outputs were produced using the 
SPSS for Windows statistical package [42]. 

2.2. The Definition of OPRR 

The acronym OPRR comes from the words Object, Property, Role, and Relationship which are the 
metu-types in OPRR [39]. Welke [45] defines the meta-types in the following way: 

. Object is a “thing” which exists on its own. Examples of objects are process, flow, store, source, 
module, etc. 

. Properties are the describing or qualifying characteristics associated with the other meta-types. 
Typical properties include name, description, definition, etc. 

l Relationship is an association between two or more objects. For example, there may be a relation- 
ship between a source and a process meaning that the process u.seS the source. 

. Role is the name given to the link between an object and its connection with a relationship. From 
the example above, the process would be the user and the source would be the origin of the data. 

In MetaEdit’s CAME environment we have extended OPRR by defining explicit mappings from these 
concepts onto their representations. We have used the following notation [38]: an object type is represented 
by a rectangle, a property type by an ellipse, a role type by a circle and a relationship type by a diamond. 
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The name of each object, property, role or relationship type is written inside its symbol. An example of 
such a graphical OPRR model is in figure 1. 

Fig. I: OPRR Model of the Class Diagram technique of OMT (excerpted, see [34]) 

Formally, a model of a technique can be defined in OPRR as a six-tuple M = (O,P, R, X, r, p) , where 

0 is a finite set of object types 

P is a finite set of property types 

R is a finite set of relationship types 

X is a finite set of role types 

r is a mapping r: R + {xix E @(Xx (p(0) - {0})) h n(x) 2 2) , where n(x) is the cardinality of x 

and@(O) is the power set of set 0. 

In other words, r maps a relationship type to a member of the set of powersets of role types and 
powersets of objects, i.e. r(e) = {<a-role, (objects}>, . . . ) , where e E R . This mapping links the 
role types to the relationship types on the one hand and to the object types on the other hand. 

Here we define two functions, that will be used later. Suppose x E r(e), i.e. x takes the form of 

<a-role, (objects}>, the function role(x) returns the role included in x and function 

objects(x) returns the object set of x. 

p is a partial mapping p: NP + p(P) , where NP = (0 u R u X} is the set of non-property types. In 

other words, p is a partial mapping from the non-property types to all subsets of property types. 
The mapping defines the property types associated with the non-property types. 

In what follows we will use indices, e.g. 0, to indicate the object types, and MT for the model of a 
particular technique T. As noted earlier, we consider a method !%Jto be a set of techniques. The model of 
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the method is thus M, = UM~ , because we omit here the interconnections between techniques. The 
r&f 

concept of model of a method has been added to the original OPRR definition in [38, 391 to allow simple 
handling of methods which contain sets of techniques. 

2.3. OPRR Definition of an Example Technique 

In this paper we use the definition of the OMT methods Class Diagram technique [35] as a running 
example for the discussion of metric values. OMT is an object-oriented method, which extensively uses 
graphical diagrams to describe information systems. The Class Diagrams are used for analysing and 
modelling class hierarchies and the associations between classes. A sample Class Diagram is given in 
Figure 2. Classes are connected to each other by Inheritance, Aggregation or Association relationships. 
Objects are connected to Classes by Instantiation relationships. Note that our choice of an object-oriented 
method does not exclude the application of the metrics to conventional methods and techniques. 
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Fig. 2: A sample Class Diagram 

The Class Diagram technique has been formally specified using OPRR. The result is expressed in the 
sixtuple M,D = (0, P, R, X, r, p) as shown in Table 1. The equivalent graphical OPRR model is, for the sake 

of brevity, given only partially in figure 1. This model shows among other things the naming of Objects and 
Classes, and the Generalisation/Specialisation hierarchy. 
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{Class, Disjoint divider, Divider, Object, Subclass group} 

(Class name, Group name, ID, Object name, Aggregation name, Association name, Attributes, 
Discriminator, Link Attributes, Operations, Ordered, Qualifier, Role name, Cardinality} 

(Aggregation 1 to 1, Aggregation 1 to M, Association (optional to 1), Association (optional to 
many), Association (optional to optional), Association 1 to 1, Association 1 to many, Association 
many to many, Generalisation, Generalisation/Specialisation, Instantiation, Qualified association 
1 to 1, Qualified association 1 to many, Qualified association many to many, Specialisation) 

(Ass 1 part, Ass M part, Ass opt part, Assembled to, Gen_from, Gen_to, Generalisation part, 
Instantiates, Part of, Qualified 1 part, Qualified M part, Specialisation_part, Superclass_part, is 
instance of) 

{<Aggregation 1 to 1, {<Assembled to, {Class ]>, < Part of, (Class}>}> 
<Aggregation 1 to M, (<Ass M part, {Class, Class }>, c Assembled to, (Class)>)>, 
<Association (optional to 1), {<Ass 1 part, (Class )>, c Ass opt part, (Class)>}>, <Association 
(optional to many), (<Ass opt part, {Class }>, c Ass M part, {Class, Class)>)>, 
<Association (optional to optional), {<Ass opt part, {Class }>, c Ass opt part, {Class}>)>, 
<Association 1 to 1, {<Ass 1 part, {Class )>, c Ass 1 part, {Class)>}>, <Association 1 to many, 
{<Ass M part, {Class, Class }>, c Ass 1 part, (Class}>)>, <Association many to many, {<Ass M 
part, {Class, Class }>, c Ass M part, {Class, Class}>)>, cGeneralisation/Specialisation, 
(cSpecialisation_part, (Class }>, c Generalisation part, {Class)>)>, <Instantiation, { cis 
instance of, {Class }>, c Instantiates, {Object}>}>, <Qualified association 1 to 1, {<Ass 1 part, 
{Class )>, c Qualified 1 part, {Class)>}>, <Qualified association 1 to many, (<Qualified 1 part, 
{Class }>, c Ass M part, {Class, Class)>}>; <Qualified association many to many, {<Ass M 
part, {Class, Class )>, c Qualified M part, (Class}>}>) 

{<Class, {Class name, Operations, Attributes}>, <Disjoint divider, (ID, Discriminator}>, 
<Divider, (ID, Discriminator)>, <Object, {Object name, Attributes}>, <Subclass group, {Group 
name)>, <Ass 1 part, {Role name)>, <Ass M part, {Qualifier, Cardinality, Role name, 
Ordered)>, <Ass opt part, {Role name)>, <Assembled to, {Role name)>, <Qualified 1 part, 
{Qualifier, Role name}>, <Qualified M part, (Qualifier, Role name, Cardinality}>} 

Table 1: OPRR definition of Class Diagrams 

3. METRICS FOR TECHNIQUES AND METHODS 

This Section outlines a number of metrics and their purpose. The metrics are derived and enhanced 
from metrics proposed in earlier literature for the complexity of specification techniques [43]. We describe 
the metrics on two levels: the technique level, which describes the characteristics of one technique, and the 
method level, which describes the complexity of a set of techniques. 

We restrict the complexity of techniques and methods to two aspects. On the one hand we try to 
measure the complexity of learning and understanding the technique, which is related to the number of 
different concepts and constructs (say, object types and relationship types) used in the technique. On the 
other hand it is desirable to get insight in the complexity of the internal structure of the models resulting 
from applying the technique. This complexity is dependent on the number of describing properties of the 
technique’s objects and relationships. We are not trying to derive normative values such as “quality” or 
“learnability” from the measures, because these are not direct numerical attributes of the methods [ 161. This 
would require extensive empirical evidence from systems development practice. 

3.1. Basic Preliminaries 

Design and specification metrics, found in, for example, Albrecht’s and Henry and Kafura’s work [1, 
211, have several reported problems, such as poor theoretical foundations, being hard to analyse, and being 
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flawed derivatives of code measures [26, 301. In order to avoid this, we present a formal mathematical basis 
of the metrics and guidelines for the interpretation of the obtained values. Furthermore, the metrics are 
defined so that they are directly computable from the properties of the models of the methods [ 161. 

For each metric the following is described: the Formula for computing the metric, a brief explanation 
of the metric, the range in which the values obtained from data in Appendix 1 are located, and some 
comments on their interpretation. The range is given as a box-plot, which is a five number summary of 
smallest observed value that isn’t outlier, lower quartile, median, higher quartile and largest observed value 
that isn’t outlier [42, 451. Notice that extreme values (values, which are more than 1.5 times the difference 
between the lower quartile and upper quartile outside of the quartiles) are plotted separately. 

The box-plot gives an interval where the values have been observed. If a more precise positioning of a 
technique was needed, one could use for example box-plots or medians and variances from a particular 
category of techniques. For example, in the case of Class Diagrams we could take the category of class 
description techniques contained in object-oriented methods [23]. The box-plots for techniques and methods 
can be found in Appendices 2 and 4 respectively. 

The quartiles and median give the range of observed values for a given metric: most of the techniques 
will fall into the range between a lower and upper quartile. If we find a significantly lower or higher value 
there will be a need to analyse the reasons for it. 

The obtained metric values have the usual properties of software metric data, i.e. the distributions are 
discrete, heavily skewed and there are a lot of outliers [28], which make the usual statistical techniques 
unsuitable. Thus we apply data analysis and outlier analysis as ways of presenting the data. As Kitchenham 
[28] points out, the interpretation of the results makes metric values meaningful, not their comparison with 
some arbitrarily given values. Yet, to make the judgements easier, we have derived some guiding values 
from the available material. The comparison of metric values between methods of similar species should be 
particularly fruitful. 

3.2, Technique Level Metrics 

Let the model of a technique T be given as Mr = (OT,PT,Rr,Xr,rr,pT). We Use the function n(A) 

to denote the number of elements in the set of A. As all sets are considered to be finite (see Section 2) this 
function always yields finite numbers. 

3.2.1. Independent Measures 

The first measure is the number of object types used per technique. This measure, and the following two, 
are used while analysing the complexity of the technique on the basis of the number of concepts to be 
learned. These measures were already suggested by Teichroew et al. [43]. We assume that a technique with 
many concepts is more complex to learn, than one with fewer concepts. On the other hand, a technique with 
more concepts should also be able to capture more precise or detailed information about the object system, 
as claimed by Oei and Falkenberg [3 I]. 

Definition 1 n(0~) is the count of object types per technique. 

This metric shows the number of individual object types used to specify 
OMT Class Diagrams, we find out that n(OClass Diagram) = 5. This can 

object systems. In the case of 
be compared to the range of 

values derived from the full set of 36 techniques shown in the box-plot in Appendix 2, where we see, that 
the value is on the maximum line. This means that the OMT Class Diagram technique possesses a relatively 
large number of object types. 

Definition 2 tI(RT) is the count of relationship types per technique. 
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This is the number of concepts which are used for describing connections between objects. The value 

n(RClass Diagram ) = 15 is marked as an extreme value in the box-plot. The reason for the large number is 

partially due to the way of modelling the particular method in OPRR, because all the subtypes of 
relationships with different cardinalities have been modelled as separate relationship types. The reason for 
this choice is that the technique has been modelled for use with a CASE tool, and relationships with 
different graphical appearance have to be modelled as different types. 

The reader should notice that the lower quartile and the minimum have the same value (1), and thus the 
number of relationship types tends to be quite low, between 1 and 5 for most techniques. 

Definition 3 n(PT) is the number of property types per technique. 

The Value, n(Pclass Diagram) = 14, is an outlier, which shows that the Class Diagrams use the largest 

number of properties from the techniques observed. Note that most CASE tools allow the specification of 
various properties per object or relationship type (such as definition, user comments, etc.), so n(PT) can be 

rather high in comparison to n(OT) and n(RT) , However, in the particular case of OMT Class Diagrams, 

there are more relationship types than property types. The reader should notice that this metric measures the 
total number of property types in the whole technique, whereas the following metrics count properties of 
individual object types or relationship types. 
The following three metrics (Formulae 5, 7 and 9) suggest metrics that aim at describing the complexity of 
the description of the object or relationship types. 

Definition4 PO(MT,o)=n(pT(o)),where 0~0~ 

Definition 5 PO 

The fourth Formula is the number of properties for a given object type. It is defined separately in order 
to define the aggregate metrics for the technique in Section 3.2.2. The fifth Formula is the average number 
of properties per object type. This metric shows the average complexity of the descriptions of the object 
types in a technique. The value p o (M class Diagram) = 2 is quite typical, and it seems that most of the 

techniques fall into the range of one to three properties per object type. 

Definition 6 PR(MT,e) = n(pT(e))+ xn(p(role(x))), where e E Rr . 
-r(r) 

Definition 7 FR(MT) =$-J~‘R’“V~’ 
T 

The sixth Formula is the number of properties of a relationship type and its accompanying role types. 
Inside the summation of Formula 6 the number of properties for all the role types associated with the 
current relationship type is counted. Formula seven counts the average number of properties per 
relationship type. This metric shows the complexity of the interface between object types. The value 

PR(M ClpsSDiPgrVn ) = 4.4 is below the maximum line. This indicates, together with the high number of 

relationship types in Formula 2, that the OMT Class Diagrams use a large number of simple relationships 
and thus put more emphasis on the types of the relationships than on their content. 
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Definition 8 R,(M,,o) = , where o E 0,. 

Definition 9 

Formula 8 gives the number of relationship types that can be connected to a certain object type. 
Formula 9 gives the average number of relationship types that can be connected to a given object type. This 
metric measures how complicated it is to select the right connection between object types. For example, a 
requirements analysis technique which is interested only in the existence of relationships between object 
types, not in their content, can just use one connection type, whereas a detailed design technique can 
present a large number of slightly different relationship types. 

This metric was chosen instead of, for example, the average number of object types that can be 
connected by a given relationship type, because in the normal application of a technique the developers are 
faced with the selection of a relationship type between objects instead of making first a relationship and 

then selecting object types for the relationship. The value for R, (MCPUr Dirrdms) = 4.0, which is on the upper 

quartile line and shows that the technique has quite simple descriptions of the interfaces between objects 
(Formula 7 above), but a high number of relationship types in the interface. The result can be interpreted as 
showing that the complexity of using the relationships in this technique is in the selection of the correct 
relationship type and not in the description of the relationship. 

3.2.2. Aggregate Metrics 

The independent metrics above described the individual characteristics of techniques. In this Section 
we propose some aggregate metrics that can be used to measure the overall complexity of the technique. 

Definition 10 C(M,, o) = 0 E yeUj(objects(y)) 

Definition 11 C(MT) 

The quotient (Formula 10) shows the division of work in this technique, i.e. are things described by 
their internal properties, or by external connections. The quotient will get higher values if there are many 
properties and a few relationship types with a few properties. Formula 11 gives the average for the whole 

technique. The value for C(Mc,,,,niUFm) = 0,91 is quite close to the upper quartile line, and it shows that the 

technique gives considerable importance to the properties of objects. 

Definition 12 C’(M,) = &‘l(o,)* + I+,)* + n(PT)’ 

This Formula, the total conceptual complexity of a technique is not a straightforward measure, but we 
use the modulus vector of the individual complexity factors of Formulae 1, 2 and 3. We propose to use it as 
the complexity vector in a three-dimensional coordinate system. The vector can be compared with those for 
other techniques. The idea of using the complexity vector is that one can see the complexity of the 
technique by looking at how long the vector is and at the same time one can see the “style” of the technique 
by looking at in which direction the vector goes. For example the Class Diagram technique is the most 
complex by this measure as it uses properties and relationships extensively, but it contains an average 
number of objects. In Figure 3 we show an xyz-plot of the modulus vectors. In fact, as the box-plots in 
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Figure 5 show, Class Diagrams are marked as extreme values in both the number of relationships and 
properties. 

Objects 

6 

i 

4 

Relationships 
Properties 

Fig. 3: Object-Relationship-Property cube for Techniques 

3.3. Method Level Metrics 

Methods are treated here as collections of individual techniques, and thus we are omitting the problems 
related to the complexity of interconnected methods, due to the inability of OPRR to deal with the 
connections of multiple techniques. This area clearly needs to be addressed in the future, but currently there 
is a lack of formal models of technique interconnections as well as a clear and unambigious description of 
these interconnections in the method descriptions in textbooks [27]. Thus method level complexities are 
simply summaries of individual technique complexities. 

The cumulative complexities for a method are counted first for each of the object, relationship and 
property types. 

Definition 13 n(O,) = TTMn(OT) 

Definition 14 n(RM) = &n(RT) 
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Definition 15 n(P,) = c n(Pr ) 
TEM 

The following are the aggregate complexity metrics for the method level. 

Definition 16 c(M) = 

Formula 16 gives the division of work between the objects and relationships in the whole method. It is 
summed for individual objects and their properties and relationships in each of the techniques methods. 

Definition 17 C’(M) = ,/n(O,)’ + n(RM)* + n(PM)’ 

The cumulative complexity can either be defined as the cumulative value of each individual 
technique’s complexity, or we can take the sum vector of the totals of Formulae 13, 14 and 15. The 
cumulative complexity returns a value that explains the total complexity of the method. The sum vector 
identifies the “style” of the method, i.e. whether it describes the object systems mainly by properties, 
relationships, objects, and whether these are used in a coherent and consistent style. In Figure 4 we show 
these complexity vectors in an xyz-plot. 

The values for OMT are the following: n(O,,)= 12, n(R-)= 19, n(PaT) = 26 and 

c(O!QT) = 0,59. The total complexity value is: C’(OMT) = 34.73. In Appendix 3 the values of these 

metrics are given for 11 methods. The reader should notice that we have not divided the complexities by the 
number of techniques in a method n(M). This would hide the overall complexity of methods with a large 

number of techniques. We therefore present the methods in appendix 3 in order of the number of techniques 
and to the value of C’(M) . This enables us to place a method among methods of comparable complexity. 

At the method level we can observe that the OMT has the largest number of relationships and the 
second largest number of properties and objects. As the most complex method by these measures is OODA 
[4], we claim that the new object-oriented methods may have a tendency to be more complex than 
traditional methods. 
On the method level it can be useful to check out the balance of individual techniques in the methods: i.e. if 
one of the techniques has many more concepts than others, or the parts of the method are very different in 
style, this should be made explicit. In the case of OMT, the Class Diagrams use 14 of the total of 19 
relationship types and the other measures also have their highest values for Class Diagrams. This means 
that the Class Diagrams may be harder to learn and apply in practice and they are probably quite important 
for the method. The checking of the balance can be done by counting the method’s internal variances for 
each of the metrics and pointing out strange or extraordinary values. 

4. DISCUSSION AND FUTURE RESEARCH 

In this paper we have proposed a set of metrics to describe something we denote as “the complexity” of 
systems development techniques and methods. By doing so we wish to guide and instruct the method 
developers to understand and analyse the methods they suggest. Our goal is to establish one set of 
instrumental tests, that can be used easily and in a cost effective manner as an aid in evaluating methods. To 
obtain a thorough understanding, one needs to use these metrics together with other comparison aids such as 
Iivari’s classification hierarchies [24] and tabular feature comparisons [IO, 231. The proposed metrics are 
relatively simple to understand and easily implemented in a tool. Furthermore, there is little point in 
developing more complex metric a before we know more about the nature and measuring of methods. 
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Fig. 4: Object-Relationship-Property cube for Methods 

One interesting comparison could be made between the implementations of the same techniques or 
methods in different CASE tools. This could show some differences in the complexity of the use of one 
technique in different tool environments. The metrics have been applied here only for OPRR-based models 
of methods, but their adaptation for ER-based models of methods in other CASE tools should be 
straightforward. 

The metrics proposed here analyse only the conceptual part of the technique definitions based on the 
method models, and they should be accompanied by a set of metrics for the complexity of the models 
produced by applying the techniques. The analysis of application models could be used to verify the method 
complexity. There should be a negative correlation between the complexity of the method and the size of 
the application models, if the method’s conceptual complexity does indeed lead to greater expressive power 
[31]. We believe that there is a balance between learnability and expressive power of a method, and that 
organizations selecting methods should be aware of the fact that more powerful methods may be harder to 
learn, whilst being more effective for experienced users. This balance could be empirically investigated by 
tests, such as the one in Batra et. al, where users with different experience in method use apply the method 
into an ISD task [3]. 

The limitations of the approach proposed here are: first, there is no way of representing some 
constraints of techniques in OPRR, and OPRR models mainly the static aspects of the techniques. Secondly, 
OPRR is not capable of dealing appropriately with interconnected techniques. Thirdly, our values should be 
complemented with empirical experience from practical applications of methods in use. 
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In the future we will have to consider integrated methods and derive metrics for them. In that work we 
will need a better understanding of the integration of techniques and how that complicates, or simplifies, the 
methods. We must also gather empirical data about the learnability of different techniques and their 
implementations, and about the use of different constructs in different techniques. This kind of research 
should be accompanied with studies about the possiblities to avoid constructs that are error prone and hard 
to apply as in [2]. 

The metrical comparison of conventional systems development methods against object-oriented 
methods [ 171 would be an intriguing further opportunity for additional research. 
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APPENDIX 1. VALUES OBTAINED FROM 36 TECHNIQUES 

Table 2 lists the values of 36 techniques modelled with OPRR in the MetaEdit environment. The table 
shows the name of the method, the name of the technique and the values obtained for the Formulae, which 
are referred to by their functions as introduced in the main text. Thus the third column gives the number of 
object types, the fourth gives the relationship types and the fifth gives the number of properties of the 
technique. The sixth column gives the average number of properties per object type, the seventh the average 
number of properties per relationship type and the eighth column gives the average number of relationship 
types that can be connected to a given object type. The ninth column gives the quotient of the sums of the 
object’s properties and object’s relationships and their properties, and the tenth column gives the length of 
the “complexity vector” of the technique. 
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Table 2: Values obtained from 36 techniques 

APPENDIX 2. BOX-PLOTS FOR TECHNIQUES 
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In Figures 5 and 6 are the box-plots for techniques. The 5-point box-plots can be read as (from left to 
right): a bar representing minimum, a box starting from lower quartile, in the box there is the median bar 
and at the end of the box is the upper quartile: the fifth bar is the maximum. The outliers are indicated by a 
marker with the name of the technique (for example, * indicating Booth module diagrams). Notice that the 
scales of the various Figures containing box-plots differ. 
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Fig. 5: Box-plots for formulae I,2 and 3 for techniques 
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Fig. 6: Box-plots for formulae 5,9,7, 11 for techniques 

APPENDIX 3. VALUES OBTAINED FROM 11 METHODS 

1 6 

Table 3 lists the values for 11 methods, as the aggregates of the values of the techniques listed in Table 
2. The table shows the name of the method and the values obtained for the Formulae, which are referred to 
their functions as introduced in the main text. The second column gives the number of techniques of the 
method, the third column gives the total number of object types of the method, the fourth gives the number 
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of relationship types, and the fifth gives the number of the property types. The sixth column gives the 
summed comulexitv of the individual techniaues of the methods and the last column gives the length of the 
“complexity iector” of the method. 

Method 

JSP 2 3 3 8 2,17 9,06 

FUSION 2 6 5 15 0,61 16,91 

SSA 2 6 4 16 0,97 17,55 

MOSES 2 5 9 16 0,66 19,03 

OOAD 3 7 8 16 0,68 19,21 

Shlaer/Mellor 3 7 9 20 0,56 23,02 

OSA 3 9 13 21 0,56 26,29 

OMT 3 12 19 26 0,59 34,37 

Y ourdon 4 10 6 21 0,75 24,02 

RTSA 4 12 11 19 0,64 25,02 

OODA 5 19 18 32 1,05 41,34 

Table 3: Values obtained from 1 I methods 

APPENDIX 4. BOX-PLOTS FOR METHODS 

This appendix contains the box-plots for methods in Figures 7 and 8. See Appendix 2 for explanations. 
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Fig. 7: Box-plots for formulae 13, 14 and 15 for methods 
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Fig. 8: Box-plot for formula 16 for methods 


