
Pergamon

I@wmution Systems Vol. 21, No.2, pp. 209-227. 1996

Copyright@ 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

SO306-4379(96)00012-9 0306-4379196 $15.00 + 0.00

COMPLEXITY METRICS FOR SYSTEMS DEVELOPMENT METHODS AND
TECHNIQUES

MATTI ROSSI 1 and SJAAK BRINKKEMPER~

‘University of Jyvliskyla, Department of Computer Science and Information Systems, P.O. Box 35, SF-40351 Jyvaskyll, Finland

* University of Twente, Department of Computer Science, P.O. Box 217, NL-7500 AE Enschede, the Netherlands

(Received 10 Aupst 1995; in,finul revised,fivm 13 Murch 1996)

Abstract - So many systems development methods have been introduced in the last decade that one can talk about a
“methodology jungle”. To aid the method developers and evaluators in fighting their way through this jungle, we
propose a systematic approach for measuring properties of methods. We describe two sets of metrics which measure the
complexity of single diagram techniques, and of complete systems development methods. The proposed metrics
provide a relatively fast and simple way to analyse the descriptive capabilities of a technique or method. When
accompanied with other selection criteria, the metrics can be used for estimating the relative complexity of a technique
compared to others. To demonstrate the applicability of the metrics, we have applied them to 36 techniques and I1
methods

Key words: Method Evaluation, Metrics, Metamodel

1. INTRODUCTION

Recent years have witnessed the appearance of new systems development paradigms and methods.
Examples of these are object-oriented analysis and design methods, and business process re-engineering
methods. However, we feel that there is a need for improvement in the analysis of these methods and in
understanding their use and functionality. Although some attempts have been made to compare existing
methods (e.g. object-oriented methods [lo, 17, 251 and a number of general comparisons in the CRIS papers
[32, 33]), the studies lack rigour and a sound conceptual foundation, and are mostly based on ad hoc feature
analysis techniques. Some recent attempts [23, 401 have proposed more systematic approaches, based on a
common formal metamodelling language to describe methods. These hold the promise of a more systematic
and analytic way to compare methods; however, they are still mainly used for making tabular comparisons
of methods’ parts and properties.
Alongside these patterns there is a lack of CASE tools to support these methods. Brinkkemper et al. [6] and
Tolvanen and Lyytinen [44] have tackled the problem of adaptation of methods by metamodelling. The
rapid growth of the number of both methods and their support environments has led to the proposition of a
new area called Computer Aided Method Engineering, or CAME for short [29, 221. Method engineering is
defined here as the engineering discipline to design, construct, and adapt methods, techniques and tools for
the development of information systems [5 1.

We claim that by using a metamodel and a CAME environment for method engineering, we can
achieve two goals simultaneously: first, we can compare the methods analytically, and second, we can try
out these methods on a platform that supports the storage and representation of descrip tions made with this
method. Research in this area has mainly concentrated on constructing method modelling (or
metamodelling) languages [7, 441 or building support environments for them [11, 38, 411. Earlier attempts
to use a common metamodelling language for method comparison have mainly concentrated upon mapping
methods onto some “supermethod” [3 11 or comparing models of methods by identifying their common parts
[23]. Instead of these approaches we now try to find quantitative measures of techniques’ properties that can
be computed without human judgement.

In this paper, we try to establish an approach for method measurement which is systematic, automatic
and easy to use. We propose a metric approach and present a suite of metrics for methods. These metrics

210 MATTI Ross and SJAAK BRINKKEMPER

measure the complexity of the method or technique. The metrics are proposed on the basis of metamodels.
We define a metamodel to be a conceptual model of a development method. Metamodels provide a model
of the syntactical structure (or representation) of the specification technique.

The relative complexity of methods and techniques based on metamodels is significant because it can
be expected to affect the learnability and ease of use of a method. A metamodel has a type-instance
relationship with the actual application models, a simple metamodel generally leading to a more complex
application model. Or said differently, a metamodel models the expressive power of the specification
technique, by representing its vocabulary (i.e. the concepts and properties) and admissible constructs (i.e.
the relationships and the roles). There should be a negative correlation between the complexity of the
method and the size of the application models, if the method’s conceptual complexity does indeed lead to
greater expressive power [31]. Consequently, a simple method (metamodel) may be easy to learn as such,
but may be more laborous to apply when leading to more complex application models. Furthermore, as the
metamodels are used to generate model editors for a CASE tool, the metamodels serve also as an indication
of the functional complexity of the generated editor. So, generally speaking, the complexity of a method is
related to the learnability and ease of use of the method, even though this relationship may be complex.

Or said differently, the metamodels model the expressive power of the specification technique, by
representing its vocabulary (i.e. the concepts and properties) and admissible constructs (i.e. the relationships
and the roles). Furthermore, as the metamodels are used to generate model editors for a CASE tool, the
metamodels serve also as an indication of the functional complexity of the generated editor. So, generally
speaking, the expressive power of a specification technique is related to the learnability of the technique.
We therefore claim that there exists an intrisic dependency between the metamodels and the learnability of
the specification technique. Whether this dependency can be formulated as “the more complex a
metamodel, the harder the method is to learn” is not a statement we will make based on our results. This
remains to be investigate in future empirical research.

The metrics can be used for at least two purposes: first, by method engineers to check the method
properties, and second by method users to aid in the selection of methods, based on their measurable
properties. The first aspect should be emphasized at the current status of method development, as we see a
rapid appearance of new method categories, such as object-oriented [4, 9, 12, 13, 35, 441 or business
engineering methods [14]. There is a clear push to develop new methods and consequently the method
developers are falling over themselves to come up with their own developments and variants of methods in
the “fashionable” categories.

The second aspect is more problematic, because the metrics by themselves cannot be used to judge the
“goodness” or the appropriateness for the task of the method, but rather should be used combined with
approaches such as metamodel hierarchies [31] and classification frameworks [24].

To test our claims we apply the proposed metrics over a variety of well-known methods. As a by-
product, a set of tools for analysing methods within the MetaEdit CAME tool are introduced. The
adaptation of the metrics into other CAME (and CASE) environments should be straightforward.

This paper is organized as follows. In the next Section, we present the metamodelling language used to
describe methods. In Section 3, we present the proposed metrics, and in Section 4 these metrics are applied
to a number of techniques and methods in the MetaEdit environment. The last Section discusses the results
and proposes some future directions for research. The appendices contain tables and graphs with the values
of the metrics for the methods in Section 4.

2. METHODS AND THE METHOD ENGINEERING ENVIRONMENT

Techniques of interest here consist of traditional graphical formalisms, such as Object Diagrams and
Object State Diagrams. These techniques describe the object systems by objects and their relationships. In
many cases the relationships and objects can have attributes or properties. The techniques usually describe
only one aspect of an object system (such as data flows or state changes etc.). There is also a need to apply
multiple views to describe the object system. In those cases we use organised sets of techniques, called
methods. Methods contain several techniques, their interconnections and the use of these techniques [5], but
we currently limit our investigation to considering methods as simple compositions of the technique

Complexity Metrics for Systems Development Methods and Techniques ill

components. An example of a method is the Object Modelling Technique [35] which consists of several
techniques such as Class Diagrams, Data Flow Diagrams and Object State Diagrams. See appendix 1 for the
list of methods and techniques considered in this investigation.

To be able to compare and analyse techniques, we describe their structure using one common language
to define the metamodels of the methods. We use here the OPRR (Object, Property, Relationship, Role)
method modelling language, proposed by Welke [45] and enhanced by Smolander [38] to model the
techniques and methods. The use of one method modelling language gives us a basis to compare the
properties of techniques, and it provides a common background for the formulation of metrics.

It is important to notice, however, that there are a few factors that can bias the results. First, the
precision of the method description is dependent on the quality of the technique’s description in the
textbook. Some authors present detailed formal descriptions of their techniques, and others define their
techniques more vaguely. Secondly, the experience and personal preferences of the method modeller affect
the model. For example, a given concept might be metamodelled either as a property or as a relationship. In
this particular case all of the techniques have been modelled by one experienced method engineer, and we
can thus expect that they have been modelled with a consistent style.

In the following sections we describe the CAME environment, the static structure and the concepts of
OPRR and develop a model of OMT Class Diagrams [35.] using OPRR.

2.1. The CAME Environment

We have used the method engineering environment of the MetaEdit CASE shell, which is based on
OPRR [38, 361. MetaEdit supports the development of method models by allowing their graphical
description using OPRR and by translating the method descriptions automatically into diagram editors
within the CASE shell. It has been used to develop new methods for MetaEdit itself. We have currently
implemented a collection of nearly forty development techniques [34]. All of the metamodels have been
developed by one person. The ability to try out modelled methods in the diagram editor in MetaEdit was
essential in this research project, as this ensured thet the metamodels used for evaluation of the metrics
were complete and correct.

To test the metrics proposed in this paper, and to demonstrate the applicability of automating metrics
computation procedures, we have implemented a metrics calculation package using MetaEdit’s report
definition capabilities. A list of techniques and methods, together with the obtained metrics values, is to be
found in Appendices 1 and 3. The metrics computations and graphical outputs were produced using the
SPSS for Windows statistical package [42].

2.2. The Definition of OPRR

The acronym OPRR comes from the words Object, Property, Role, and Relationship which are the
metu-types in OPRR [39]. Welke [45] defines the meta-types in the following way:

. Object is a “thing” which exists on its own. Examples of objects are process, flow, store, source,
module, etc.

. Properties are the describing or qualifying characteristics associated with the other meta-types.
Typical properties include name, description, definition, etc.

l Relationship is an association between two or more objects. For example, there may be a relation-
ship between a source and a process meaning that the process u.seS the source.

. Role is the name given to the link between an object and its connection with a relationship. From
the example above, the process would be the user and the source would be the origin of the data.

In MetaEdit’s CAME environment we have extended OPRR by defining explicit mappings from these
concepts onto their representations. We have used the following notation [38]: an object type is represented
by a rectangle, a property type by an ellipse, a role type by a circle and a relationship type by a diamond.

212 MATH Ross1 and SJAAK BRINKKEMPER

The name of each object, property, role or relationship type is written inside its symbol. An example of
such a graphical OPRR model is in figure 1.

Fig. I: OPRR Model of the Class Diagram technique of OMT (excerpted, see [34])

Formally, a model of a technique can be defined in OPRR as a six-tuple M = (O,P, R, X, r, p) , where

0 is a finite set of object types

P is a finite set of property types

R is a finite set of relationship types

X is a finite set of role types

r is a mapping r: R + {xix E @(Xx (p(0) - {0})) h n(x) 2 2) , where n(x) is the cardinality of x

and@(O) is the power set of set 0.

In other words, r maps a relationship type to a member of the set of powersets of role types and
powersets of objects, i.e. r(e) = {<a-role, (objects}>, . . .) , where e E R . This mapping links the
role types to the relationship types on the one hand and to the object types on the other hand.

Here we define two functions, that will be used later. Suppose x E r(e), i.e. x takes the form of

<a-role, (objects}>, the function role(x) returns the role included in x and function

objects(x) returns the object set of x.

p is a partial mapping p: NP + p(P) , where NP = (0 u R u X} is the set of non-property types. In

other words, p is a partial mapping from the non-property types to all subsets of property types.
The mapping defines the property types associated with the non-property types.

In what follows we will use indices, e.g. 0, to indicate the object types, and MT for the model of a
particular technique T. As noted earlier, we consider a method !%Jto be a set of techniques. The model of

Complexity Metrics for Systems Development Methods and Techniques 213

the method is thus M, = UM~ , because we omit here the interconnections between techniques. The
r&f

concept of model of a method has been added to the original OPRR definition in [38, 391 to allow simple
handling of methods which contain sets of techniques.

2.3. OPRR Definition of an Example Technique

In this paper we use the definition of the OMT methods Class Diagram technique [35] as a running
example for the discussion of metric values. OMT is an object-oriented method, which extensively uses
graphical diagrams to describe information systems. The Class Diagrams are used for analysing and
modelling class hierarchies and the associations between classes. A sample Class Diagram is given in
Figure 2. Classes are connected to each other by Inheritance, Aggregation or Association relationships.
Objects are connected to Classes by Instantiation relationships. Note that our choice of an object-oriented
method does not exclude the application of the metrics to conventional methods and techniques.

I

I
I

I-Q--+_ ~_ .--.-. --.__---_ .-...
I 1

officer
Company

Employee

I L I

..__ ._.. -+
I

1
I

I I organization I I

0

EJ Department

\

Disc

Hourly employee Salaried employee

Fig. 2: A sample Class Diagram

The Class Diagram technique has been formally specified using OPRR. The result is expressed in the
sixtuple M,D = (0, P, R, X, r, p) as shown in Table 1. The equivalent graphical OPRR model is, for the sake

of brevity, given only partially in figure 1. This model shows among other things the naming of Objects and
Classes, and the Generalisation/Specialisation hierarchy.

214

o=

P=

R=

x=

r=

p=

MAT-II Ross1 and SIAAK BRINKKEMPER

{Class, Disjoint divider, Divider, Object, Subclass group}

(Class name, Group name, ID, Object name, Aggregation name, Association name, Attributes,
Discriminator, Link Attributes, Operations, Ordered, Qualifier, Role name, Cardinality}

(Aggregation 1 to 1, Aggregation 1 to M, Association (optional to 1), Association (optional to
many), Association (optional to optional), Association 1 to 1, Association 1 to many, Association
many to many, Generalisation, Generalisation/Specialisation, Instantiation, Qualified association
1 to 1, Qualified association 1 to many, Qualified association many to many, Specialisation)

(Ass 1 part, Ass M part, Ass opt part, Assembled to, Gen_from, Gen_to, Generalisation part,
Instantiates, Part of, Qualified 1 part, Qualified M part, Specialisation_part, Superclass_part, is
instance of)

{<Aggregation 1 to 1, {<Assembled to, {Class]>, < Part of, (Class}>}>
<Aggregation 1 to M, (<Ass M part, {Class, Class }>, c Assembled to, (Class)>)>,
<Association (optional to 1), {<Ass 1 part, (Class)>, c Ass opt part, (Class)>}>, <Association
(optional to many), (<Ass opt part, {Class }>, c Ass M part, {Class, Class)>)>,
<Association (optional to optional), {<Ass opt part, {Class }>, c Ass opt part, {Class}>)>,
<Association 1 to 1, {<Ass 1 part, {Class)>, c Ass 1 part, {Class)>}>, <Association 1 to many,
{<Ass M part, {Class, Class }>, c Ass 1 part, (Class}>)>, <Association many to many, {<Ass M
part, {Class, Class }>, c Ass M part, {Class, Class}>)>, cGeneralisation/Specialisation,
(cSpecialisation_part, (Class }>, c Generalisation part, {Class)>)>, <Instantiation, { cis
instance of, {Class }>, c Instantiates, {Object}>}>, <Qualified association 1 to 1, {<Ass 1 part,
{Class)>, c Qualified 1 part, {Class)>}>, <Qualified association 1 to many, (<Qualified 1 part,
{Class }>, c Ass M part, {Class, Class)>}>; <Qualified association many to many, {<Ass M
part, {Class, Class)>, c Qualified M part, (Class}>}>)

{<Class, {Class name, Operations, Attributes}>, <Disjoint divider, (ID, Discriminator}>,
<Divider, (ID, Discriminator)>, <Object, {Object name, Attributes}>, <Subclass group, {Group
name)>, <Ass 1 part, {Role name)>, <Ass M part, {Qualifier, Cardinality, Role name,
Ordered)>, <Ass opt part, {Role name)>, <Assembled to, {Role name)>, <Qualified 1 part,
{Qualifier, Role name}>, <Qualified M part, (Qualifier, Role name, Cardinality}>}

Table 1: OPRR definition of Class Diagrams

3. METRICS FOR TECHNIQUES AND METHODS

This Section outlines a number of metrics and their purpose. The metrics are derived and enhanced
from metrics proposed in earlier literature for the complexity of specification techniques [43]. We describe
the metrics on two levels: the technique level, which describes the characteristics of one technique, and the
method level, which describes the complexity of a set of techniques.

We restrict the complexity of techniques and methods to two aspects. On the one hand we try to
measure the complexity of learning and understanding the technique, which is related to the number of
different concepts and constructs (say, object types and relationship types) used in the technique. On the
other hand it is desirable to get insight in the complexity of the internal structure of the models resulting
from applying the technique. This complexity is dependent on the number of describing properties of the
technique’s objects and relationships. We are not trying to derive normative values such as “quality” or
“learnability” from the measures, because these are not direct numerical attributes of the methods [161. This
would require extensive empirical evidence from systems development practice.

3.1. Basic Preliminaries

Design and specification metrics, found in, for example, Albrecht’s and Henry and Kafura’s work [1,
211, have several reported problems, such as poor theoretical foundations, being hard to analyse, and being

Complexity Metrics for Systems Development Methods and Techniques 215

flawed derivatives of code measures [26, 301. In order to avoid this, we present a formal mathematical basis
of the metrics and guidelines for the interpretation of the obtained values. Furthermore, the metrics are
defined so that they are directly computable from the properties of the models of the methods [161.

For each metric the following is described: the Formula for computing the metric, a brief explanation
of the metric, the range in which the values obtained from data in Appendix 1 are located, and some
comments on their interpretation. The range is given as a box-plot, which is a five number summary of
smallest observed value that isn’t outlier, lower quartile, median, higher quartile and largest observed value
that isn’t outlier [42, 451. Notice that extreme values (values, which are more than 1.5 times the difference
between the lower quartile and upper quartile outside of the quartiles) are plotted separately.

The box-plot gives an interval where the values have been observed. If a more precise positioning of a
technique was needed, one could use for example box-plots or medians and variances from a particular
category of techniques. For example, in the case of Class Diagrams we could take the category of class
description techniques contained in object-oriented methods [23]. The box-plots for techniques and methods
can be found in Appendices 2 and 4 respectively.

The quartiles and median give the range of observed values for a given metric: most of the techniques
will fall into the range between a lower and upper quartile. If we find a significantly lower or higher value
there will be a need to analyse the reasons for it.

The obtained metric values have the usual properties of software metric data, i.e. the distributions are
discrete, heavily skewed and there are a lot of outliers [28], which make the usual statistical techniques
unsuitable. Thus we apply data analysis and outlier analysis as ways of presenting the data. As Kitchenham
[28] points out, the interpretation of the results makes metric values meaningful, not their comparison with
some arbitrarily given values. Yet, to make the judgements easier, we have derived some guiding values
from the available material. The comparison of metric values between methods of similar species should be
particularly fruitful.

3.2, Technique Level Metrics

Let the model of a technique T be given as Mr = (OT,PT,Rr,Xr,rr,pT). We Use the function n(A)

to denote the number of elements in the set of A. As all sets are considered to be finite (see Section 2) this
function always yields finite numbers.

3.2.1. Independent Measures

The first measure is the number of object types used per technique. This measure, and the following two,
are used while analysing the complexity of the technique on the basis of the number of concepts to be
learned. These measures were already suggested by Teichroew et al. [43]. We assume that a technique with
many concepts is more complex to learn, than one with fewer concepts. On the other hand, a technique with
more concepts should also be able to capture more precise or detailed information about the object system,
as claimed by Oei and Falkenberg [3 I].

Definition 1 n(0~) is the count of object types per technique.

This metric shows the number of individual object types used to specify
OMT Class Diagrams, we find out that n(OClass Diagram) = 5. This can

object systems. In the case of
be compared to the range of

values derived from the full set of 36 techniques shown in the box-plot in Appendix 2, where we see, that
the value is on the maximum line. This means that the OMT Class Diagram technique possesses a relatively
large number of object types.

Definition 2 tI(RT) is the count of relationship types per technique.

216 MA-I-II Ross1 and SJAAK BRINKKEMPER

This is the number of concepts which are used for describing connections between objects. The value

n(RClass Diagram) = 15 is marked as an extreme value in the box-plot. The reason for the large number is

partially due to the way of modelling the particular method in OPRR, because all the subtypes of
relationships with different cardinalities have been modelled as separate relationship types. The reason for
this choice is that the technique has been modelled for use with a CASE tool, and relationships with
different graphical appearance have to be modelled as different types.

The reader should notice that the lower quartile and the minimum have the same value (1), and thus the
number of relationship types tends to be quite low, between 1 and 5 for most techniques.

Definition 3 n(PT) is the number of property types per technique.

The Value, n(Pclass Diagram) = 14, is an outlier, which shows that the Class Diagrams use the largest

number of properties from the techniques observed. Note that most CASE tools allow the specification of
various properties per object or relationship type (such as definition, user comments, etc.), so n(PT) can be

rather high in comparison to n(OT) and n(RT) , However, in the particular case of OMT Class Diagrams,

there are more relationship types than property types. The reader should notice that this metric measures the
total number of property types in the whole technique, whereas the following metrics count properties of
individual object types or relationship types.
The following three metrics (Formulae 5, 7 and 9) suggest metrics that aim at describing the complexity of
the description of the object or relationship types.

Definition4 PO(MT,o)=n(pT(o)),where 0~0~

Definition 5 PO

The fourth Formula is the number of properties for a given object type. It is defined separately in order
to define the aggregate metrics for the technique in Section 3.2.2. The fifth Formula is the average number
of properties per object type. This metric shows the average complexity of the descriptions of the object
types in a technique. The value p o (M class Diagram) = 2 is quite typical, and it seems that most of the

techniques fall into the range of one to three properties per object type.

Definition 6 PR(MT,e) = n(pT(e))+ xn(p(role(x))), where e E Rr .
-r(r)

Definition 7 FR(MT) =$-J~‘R’“V~’
T

The sixth Formula is the number of properties of a relationship type and its accompanying role types.
Inside the summation of Formula 6 the number of properties for all the role types associated with the
current relationship type is counted. Formula seven counts the average number of properties per
relationship type. This metric shows the complexity of the interface between object types. The value

PR(M ClpsSDiPgrVn) = 4.4 is below the maximum line. This indicates, together with the high number of

relationship types in Formula 2, that the OMT Class Diagrams use a large number of simple relationships
and thus put more emphasis on the types of the relationships than on their content.

Complexity Metrics for Systems Development Methods and Techniques 217

Definition 8 R,(M,,o) = , where o E 0,.

Definition 9

Formula 8 gives the number of relationship types that can be connected to a certain object type.
Formula 9 gives the average number of relationship types that can be connected to a given object type. This
metric measures how complicated it is to select the right connection between object types. For example, a
requirements analysis technique which is interested only in the existence of relationships between object
types, not in their content, can just use one connection type, whereas a detailed design technique can
present a large number of slightly different relationship types.

This metric was chosen instead of, for example, the average number of object types that can be
connected by a given relationship type, because in the normal application of a technique the developers are
faced with the selection of a relationship type between objects instead of making first a relationship and

then selecting object types for the relationship. The value for R, (MCPUr Dirrdms) = 4.0, which is on the upper

quartile line and shows that the technique has quite simple descriptions of the interfaces between objects
(Formula 7 above), but a high number of relationship types in the interface. The result can be interpreted as
showing that the complexity of using the relationships in this technique is in the selection of the correct
relationship type and not in the description of the relationship.

3.2.2. Aggregate Metrics

The independent metrics above described the individual characteristics of techniques. In this Section
we propose some aggregate metrics that can be used to measure the overall complexity of the technique.

Definition 10 C(M,, o) = 0 E yeUj(objects(y))

Definition 11 C(MT)

The quotient (Formula 10) shows the division of work in this technique, i.e. are things described by
their internal properties, or by external connections. The quotient will get higher values if there are many
properties and a few relationship types with a few properties. Formula 11 gives the average for the whole

technique. The value for C(Mc,,,,niUFm) = 0,91 is quite close to the upper quartile line, and it shows that the

technique gives considerable importance to the properties of objects.

Definition 12 C’(M,) = &‘l(o,)* + I+,)* + n(PT)’

This Formula, the total conceptual complexity of a technique is not a straightforward measure, but we
use the modulus vector of the individual complexity factors of Formulae 1, 2 and 3. We propose to use it as
the complexity vector in a three-dimensional coordinate system. The vector can be compared with those for
other techniques. The idea of using the complexity vector is that one can see the complexity of the
technique by looking at how long the vector is and at the same time one can see the “style” of the technique
by looking at in which direction the vector goes. For example the Class Diagram technique is the most
complex by this measure as it uses properties and relationships extensively, but it contains an average
number of objects. In Figure 3 we show an xyz-plot of the modulus vectors. In fact, as the box-plots in

218 MAT~I ROSSI and SJAAK BRINKKEMPER

Figure 5 show, Class Diagrams are marked as extreme values in both the number of relationships and
properties.

Objects

6

i

4

Relationships
Properties

Fig. 3: Object-Relationship-Property cube for Techniques

3.3. Method Level Metrics

Methods are treated here as collections of individual techniques, and thus we are omitting the problems
related to the complexity of interconnected methods, due to the inability of OPRR to deal with the
connections of multiple techniques. This area clearly needs to be addressed in the future, but currently there
is a lack of formal models of technique interconnections as well as a clear and unambigious description of
these interconnections in the method descriptions in textbooks [27]. Thus method level complexities are
simply summaries of individual technique complexities.

The cumulative complexities for a method are counted first for each of the object, relationship and
property types.

Definition 13 n(O,) = TTMn(OT)

Definition 14 n(RM) = &n(RT)

Complexity Metrics for Systems Development Methods and Techniques 219

Definition 15 n(P,) = c n(Pr)
TEM

The following are the aggregate complexity metrics for the method level.

Definition 16 c(M) =

Formula 16 gives the division of work between the objects and relationships in the whole method. It is
summed for individual objects and their properties and relationships in each of the techniques methods.

Definition 17 C’(M) = ,/n(O,)’ + n(RM)* + n(PM)’

The cumulative complexity can either be defined as the cumulative value of each individual
technique’s complexity, or we can take the sum vector of the totals of Formulae 13, 14 and 15. The
cumulative complexity returns a value that explains the total complexity of the method. The sum vector
identifies the “style” of the method, i.e. whether it describes the object systems mainly by properties,
relationships, objects, and whether these are used in a coherent and consistent style. In Figure 4 we show
these complexity vectors in an xyz-plot.

The values for OMT are the following: n(O,,)= 12, n(R-)= 19, n(PaT) = 26 and

c(O!QT) = 0,59. The total complexity value is: C’(OMT) = 34.73. In Appendix 3 the values of these

metrics are given for 11 methods. The reader should notice that we have not divided the complexities by the
number of techniques in a method n(M). This would hide the overall complexity of methods with a large

number of techniques. We therefore present the methods in appendix 3 in order of the number of techniques
and to the value of C’(M) . This enables us to place a method among methods of comparable complexity.

At the method level we can observe that the OMT has the largest number of relationships and the
second largest number of properties and objects. As the most complex method by these measures is OODA
[4], we claim that the new object-oriented methods may have a tendency to be more complex than
traditional methods.
On the method level it can be useful to check out the balance of individual techniques in the methods: i.e. if
one of the techniques has many more concepts than others, or the parts of the method are very different in
style, this should be made explicit. In the case of OMT, the Class Diagrams use 14 of the total of 19
relationship types and the other measures also have their highest values for Class Diagrams. This means
that the Class Diagrams may be harder to learn and apply in practice and they are probably quite important
for the method. The checking of the balance can be done by counting the method’s internal variances for
each of the metrics and pointing out strange or extraordinary values.

4. DISCUSSION AND FUTURE RESEARCH

In this paper we have proposed a set of metrics to describe something we denote as “the complexity” of
systems development techniques and methods. By doing so we wish to guide and instruct the method
developers to understand and analyse the methods they suggest. Our goal is to establish one set of
instrumental tests, that can be used easily and in a cost effective manner as an aid in evaluating methods. To
obtain a thorough understanding, one needs to use these metrics together with other comparison aids such as
Iivari’s classification hierarchies [24] and tabular feature comparisons [IO, 231. The proposed metrics are
relatively simple to understand and easily implemented in a tool. Furthermore, there is little point in
developing more complex metric a before we know more about the nature and measuring of methods.

220 MATTI ROSSI and SJAAK BNNKKEMPER

Relationships

Method name

x Yourdon

l SSA

l ShlaeVMellor

* RTSA
-. ,, _

$4 OSA

a OODA
_-v
Q OOAD

* MOSES
-1

@ JSP

0 FUSION

Fig. 4: Object-Relationship-Property cube for Methods

One interesting comparison could be made between the implementations of the same techniques or
methods in different CASE tools. This could show some differences in the complexity of the use of one
technique in different tool environments. The metrics have been applied here only for OPRR-based models
of methods, but their adaptation for ER-based models of methods in other CASE tools should be
straightforward.

The metrics proposed here analyse only the conceptual part of the technique definitions based on the
method models, and they should be accompanied by a set of metrics for the complexity of the models
produced by applying the techniques. The analysis of application models could be used to verify the method
complexity. There should be a negative correlation between the complexity of the method and the size of
the application models, if the method’s conceptual complexity does indeed lead to greater expressive power
[31]. We believe that there is a balance between learnability and expressive power of a method, and that
organizations selecting methods should be aware of the fact that more powerful methods may be harder to
learn, whilst being more effective for experienced users. This balance could be empirically investigated by
tests, such as the one in Batra et. al, where users with different experience in method use apply the method
into an ISD task [3].

The limitations of the approach proposed here are: first, there is no way of representing some
constraints of techniques in OPRR, and OPRR models mainly the static aspects of the techniques. Secondly,
OPRR is not capable of dealing appropriately with interconnected techniques. Thirdly, our values should be
complemented with empirical experience from practical applications of methods in use.

Complexity Metrics for Systems Development Methods and Techniques 221

In the future we will have to consider integrated methods and derive metrics for them. In that work we
will need a better understanding of the integration of techniques and how that complicates, or simplifies, the
methods. We must also gather empirical data about the learnability of different techniques and their
implementations, and about the use of different constructs in different techniques. This kind of research
should be accompanied with studies about the possiblities to avoid constructs that are error prone and hard
to apply as in [2].

The metrical comparison of conventional systems development methods against object-oriented
methods [171 would be an intriguing further opportunity for additional research.

Acknowledpmenr.~ - The authors would wish to thank Steven Kelly, Hui Liu and the other members of MetaPHOR team of the
University of Jyvlskylti. the Design Methodology Research Group of the University of Twente and the anonymous reviewers for their
constructive remarks that led to improvement of the presentation of the metrics research results in the paper.

[II

PI

131

141

151

161

I71

181

191

[IO1

[I II

[I21

1131

[I41

II51

[I61

[I71

[I81

[I91

REFERENCES

A.J. Albrecht, J.E. Gaffney. Software function, source lines of code, and development prediction: a software science validation.
IEEE Trunsuctinns on Sofrwure Engineering, 9(6): 639-647 (1983).

D. Batra. A framework for studying human error behavior in conceptual database modeling. Inf~rmutirm & Munagement, Vol. 25,
pp.121-I31 (1993).

D. Batra, J. Hoffer and P. Bostrom. Comparing representations with relational and EER models. CACM 33(2): I26- 139 (1990).

G. Booth. Object-Oriented Ana1ysi.s und Design. Benjamin Cummings, Redwood City, California (1994).

S. Brinkkemper. Method Engineering: Engineering c$ lnfinmation Systems Development Methods und To&. Information and
Software Technology, Forthcoming (1996).

S. Brinkkemper, M. de Lange, R. Looman and F. H. G. C. van der Steen. On the derivation of method companionship by
metamodelling. ACM SIGSOFTSofiwure Engineering Notes, E(1): 49-58 (1990).

S. Brinkkemper. Form&&on oflnfi~rmurion Systems Modelling. Thesis Publishers, Amsterdam (1990).

John Cameron. J.Sf & JSD: The Juckson Approuch fo Sofiwure Development,” IEEE Computer Society Press, Washington (1989).

D. de Champeaux, D.D. Lea and P. Faure. Object-Oriented Systems Development. Addison-Wesley (1993).

D. de Champeaux, P. Fame. A comparative study of object oriented analysis methods. Journul of Object-Oriented Progrumming,
5(I): 21-33 (1992).

M. Chen, J.F. Nunamaker Jr. and G. Mason. The Architecture And Design Qf A Colluborutive Environment For Systems
Dt$nirion, pp.22.28, DATA BASE (1991).

P. Coad, E. Yourdon. Object-Oriented Anulysis. Yourdon Press, Englewood Cliffs, New Jersey (1991).

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes and P. Jeremaes, Object-Oriented Developmenr The Fu.rion
Method. Prentice Hall, Englewood Cliffs (1994).

T.H. Davenport, J.E. Short. The New Industriui Engineering: I@rmution Technology und Business Proce.rs Redesign. pp. 1 I-26.
Sloan Management Review (1990).

D. Embley. D. Kurtz and S. Woodtield. Object Oriented Systems An&& A Model-Driven Approuch. Yourdon Press, Prentice-
Hall, Englewood Cliffs, NJ, USA (1992).

N. Fenton. Software Measurement: A necessary scientific basis. IEEE Trunsuctions on Softwure Engineering 20(3): 199-206
(1994).

R. Ficbman. C. Kemerer. Object-oriented and conventional analysis and design methods - comparison and critique. IEEE
Cornpurer, 25(IO): 22-39 (1992).

C. Gane, T. Sarson. Structured Systems Anulysis: Tocrls und Techniques. Prentice Hall. Englewood Cliffs, NJ (1979).

G. Goldkuhl. Contextual activity modeling of information systems. In Proceeding r!f’ the Third fnternutionol Working Co&rence
on Dynamic Modelling ofi pp. 125-145, Delft Technical university, Noordwijkerhout (1992).

222 MATD ROSSI and SJAAK BRINKKEMPER

Lw

1211

Pa

WI

[241

~251

WI

WI

WI

[291

1301

[311

~321

r331

[341

[351

I361

[371

[381

1391

[401

[411

~421

[431

B. Henderson-Sellers, J. Edwards. BookTwo of Object-Oriented Knowledge The Working Object, Prentice Hail, Sydney (1994).

S. Henry, D. Kafura. Software structure metrics based on information flow. IEEE Trunsuctions on Softwure Engineering 7(5): 510-
518 (1981).

M. Heym, H. bsterle. Computer-aided methodology engineering. Injinmution und Sojiwure Technology 35(6/7): 345-354 (1993).

S. Hong, G. van den Goor and S. Brinkkempcr. A comparison of six object-oriented analysis and design methods. In Proceedings
ofthe 26th Huwaiiun Conference on Systems Sciences, pp. 689-698, IBEE Computer Science Press (1993).

J. Iivari, P. Kerola. A sociocybernetic framework for the feature analysis of information systems development methodologies. In
Inji~rmution Systems Methodologies: A Feuture Anulysis, pp. 87- 139, North-Holland, Amsterdam (1983).

Iivari, Juhani. Object-oriented information systems analysis: A comparison of six object-oriented analysis methods. pp. 85--l IO in
Methods und Associuted Tools.for the Informution Systems Life Cycle (A-55). A. A. Verrijn-Stuart and T. W. Olle (Ed.), Elsevier
Science B.V., North-Holland (1994).

ISO. EXPRESS Lunguuge Reference Munuul. Technical report IS0 TC 184/SC4/WG5, Document N 14 (199 1).

S. Kelly, K. Smolander. Evolution and issues in metaCASE. Informution und Softwure Technology (1995).

B. Kitchenham, Metrics and measurement. In Sofrwure Engineertr reference book, Butterworth-Heinemann, Oxford (1991).

Kumar, Kuldeep, Richard J. Welke. Methodology Engineering: A proposal for situation specific methodology construction. In
Challenges und Strutegies,fi>r Reseurch in Systems Development, John Wiley & Sons, Washington (1992).

Karl J. Lieberherr, Ignacio Silva-Lepe and Cun Xiao. Adaptive object-oriented programming using graph-based customization.
CACM, No.4: 94-101 (1994).

J.L.H. Oei, E.D. Falkenberg. Harmonisation of information systems modelling and specification techniques. In Method.7 und
Associuted Tools for the Information Systems Life Cycle, Elsevier Science publishers (1994).

T.W. Olle, H.G. Sol and A.A. Verrijn-Stuart. Proceedings of the IFIP WC 8.1 Working Coqference on Compurutive Review oj
Inji~rmution Systemr Design Methodologies. North-Holland, Amsterdam (1982).

T.W. Olle, H.G. Sol and A.A. Venijn-Stuart. Proceedings qf the IF/P WG 8.1 Working Conference on Compurutive Review of
Irzformution Systems Design Methodologies: Improving the Pructice. North-Holland, Amsterdam (1986).

M. Rossi, J.-P. Tolvanen. Metumodeling approach to method compurison: A survey of a set of ISD methods. University of
Jyvaskyll(1994).

J. Rumbaugh. M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented Modeling und Design. Prentice-Hall,
Englewood Cliffs, NJ, USA (1991).

S. Shlaer, S.J. Mellor. Object Lifecycles: Modelling the World in Stutes. Prentice Hall, Yourdon Press Computing Series,
Englewood Cliffs, NJ, USA (1992).

Slooten, Kees van, Sjaak Brinkkemper. A method engineering approach to information systems development. In Proc.s. ofthe IFIP
WG 8.1 Working Conference on the I~ji>rmution Systems Development Process, pp. 167- 186, North-Holland, Amsterdam (1993).

Kari Smolander, Kaile Lyytinen, Veli-Pekka Tahvanainen and Pentti Marttiin. Metaedit --- a flexible graphical environment for
methodology modelling. In Advunced Inrbrmution Systems Engineering, Proceedings of the Third Internutionul Conjizrence
CAiSEPI, pp. 168-193, Trondheim, Norway, May, Springer-Verlag, Berlin (1991).

Kari Smolander. OPRR: a model for modelling systems development methods. In Next Generution CASE Tools, pp. 224-239, IOS
Press, Amsterdam, the Netherlands (199 1).

X. Song, L. Ostenveil. Toward.? Objective and Systematic Compurisonr ofsoftwure Design Methodologies. IEEE Software (1992).

Paul G. Sorenson, Jean-Paul Tremblay and Andrew J. McAllister. The Metuview System for Muny Speci@ution Environments.
pp.30-38, IEEE SOFTWARE (1988).

SPSS. SPSSfor Windows 1.0 Reference Guide. SPSS Inc., Chicago, USA (1994).

Daniel Teichroew, Petar Macasovic, Ernest A. Hershey III and Yuzo Yamamoto. Application of the entity-relationship approach to
information processing systems modeling. In Entity-Relutionship Approuch to Systems Anulysis and Design, pp. 15-38, orth-
Holland (1980).

[44] J.-P. Tolvanen. K. Lyytinen. Flexible method adaptation in CASE environments - the metamodeling approach. Scundinuviun
Journul of I@>rmution Systems S(I): 5 1-77 (1993).

Complexity Metrics for Systems Development Methods and Techniques 223

[45] J.W. Tukey. Explorutmy Datu Anulysis. Addison Wesley. Reading, MA (1977)

[46] P. Ward, S. Mellor. StructuredAnolysis.for Reul-Time Systems. Prentice-Hall, New Jersey (1985)

[47] E. Yourdon. Modern Structured Analysis. Prentice-Hall, Englewood Cliffs, NJ, USA (1989).

APPENDIX 1. VALUES OBTAINED FROM 36 TECHNIQUES

Table 2 lists the values of 36 techniques modelled with OPRR in the MetaEdit environment. The table
shows the name of the method, the name of the technique and the values obtained for the Formulae, which
are referred to by their functions as introduced in the main text. Thus the third column gives the number of
object types, the fourth gives the relationship types and the fifth gives the number of properties of the
technique. The sixth column gives the average number of properties per object type, the seventh the average
number of properties per relationship type and the eighth column gives the average number of relationship
types that can be connected to a given object type. The ninth column gives the quotient of the sums of the
object’s properties and object’s relationships and their properties, and the tenth column gives the length of
the “complexity vector” of the technique.

Method

Demeter
WI
Express [26]

FUSION
1131

FUSION

Goldkuhl
[I91
JSP [8]

JSP

MOSES
PO1
MOSES

OMT [35]

OMT

OMT

OOAD [12]

OOAD

OOAD

OODA [4]

OODA

OODA

OODA

Technique

Demeter

EXPRESS-G

Object Interaction Graph

Object Model

Activity model

Data Structure Diagram

Program Structure Diagram

Event Model

O/C Model

Class Diagram

Data Flow Diagram

State Diagram

Object Oriented Analysis
and Design

Object State Diagram

Service Chart

Class Diagram

Module Diagram

Object Diagram

Process Diagram

+r) “(R-r) $‘T) f’o(M~) FR(MT) HO ~MT) c(MT.

3

5

2

4

5

1

2

1

4

5

3

4

3

1

3

3

10

1

2

2 5 4 2 ,50 1,33 6,16

6 13 2,20 4 2,67 ,14 15,17

1 7 3 1 3 375 7,35

4 8 2 2,25

5 8 1,60 2,80

,75

,2O

4

1,88

4

2

2

1

1

,50

1,44

1

4

3

954 9,80

,55 IO,68

1 3 3 1

2 5 2,50 1,50

1 6 3 1

3 3,32

1,75 5,74

60 6,16

8 10 4,50 6

15 14 2 4,40

3 8 I,67 3

1 4 1,50 1

5 6 2,33 4

,67 13,42

,91 21,12

319 9,06

950 5,74

,37 8,37

1 3 2 1

2 7 2,67 2

9 10 4,67 5

1 4 3 1

6 8 5 6

1 6 4 1

1 3,32

,89 7,87

,70 13,78

1,50 lo,82

,17 IO,05

1 6,40

224 MATII ROSS1 und SJAAK BIUNKKEMPER

OODA

OSA [15]

OSA

OSA

RTSA [46]

State Transition Diagram

Object Behavior Model

Object Interaction Model

Object Relationship Model

Entity Relationship Attribute
Diagram

Real-Time Structured
Analysis

State Transition Diagram

Structure Chart

Action Data Flow Diagram

4 1 1 3 ,25 5,lO

6 3 4 1 338 7,81

4 1 2 2,50 914 4,58

11 1,80 2,20 1,57 975 13,96

6 2,33 1,67 350 1,44 7

RTSA 4 2,20

RTSA

RTSA

Shlaerl

Mellor [36]

Shlaerl

Mellor

Shlaerl

Mellor

SSA [18]

5 2

4 2

7 2,50

Information Structure
Diagram

State Transition Diagram

8 2,50 2

5 2

6 2,33 1,67

SSA

Yourdon
]471

Yourdon

Entity Relationship Attribute
Diagram

Structured Systems Analysis

Data Flow Diagram

10 3 2

6 1,67 2

Yourdon

Yourdon

Entity Relationship Attribute
Diagram

State Transition Diagram

Structure Chart

3

3

1

5

3

5

3

1

2

2

3

3

3

3

3

3

1

1

4

2

7

2

7

1

1

4

4

1

2

2

2

2

1

1

6 2,33 1,67

5

4

2

2

4,20

1

1

3

1

1

1

Table 2: Values obtained from 36 techniques

APPENDIX 2. BOX-PLOTS FOR TECHNIQUES

1

4

2

1,75

5

4

,5O

2

1

,50

4

2

,30 9,49

,40 5,92

367 4,24

,30 8,31

1,06 9,17

940 5,92

1,44 7

,50 lo,63

,42 7

1,44 7

940 5,92

.67 4,24

In Figures 5 and 6 are the box-plots for techniques. The 5-point box-plots can be read as (from left to
right): a bar representing minimum, a box starting from lower quartile, in the box there is the median bar
and at the end of the box is the upper quartile: the fifth bar is the maximum. The outliers are indicated by a
marker with the name of the technique (for example, * indicating Booth module diagrams). Notice that the
scales of the various Figures containing box-plots differ.

Complexity Metrics for Systems Development Methods and Techniques 225

OMT Class Diagram

/ Module Diagram
*

OMT Class Diagram

0

4 6 8 10

Fig. 5: Box-plots for formulae I,2 and 3 for techniques

5’

7m

OODA Class Diagram

DA Object Diagram

0 1 2 3 4 5 6 7

Fig. 6: Box-plots for formulae 5,9,7, 11 for techniques

APPENDIX 3. VALUES OBTAINED FROM 11 METHODS

1 6

Table 3 lists the values for 11 methods, as the aggregates of the values of the techniques listed in Table
2. The table shows the name of the method and the values obtained for the Formulae, which are referred to
their functions as introduced in the main text. The second column gives the number of techniques of the
method, the third column gives the total number of object types of the method, the fourth gives the number

226 MATII Ross1 and SJAAK BIUNKKEMPER

of relationship types, and the fifth gives the number of the property types. The sixth column gives the
summed comulexitv of the individual techniaues of the methods and the last column gives the length of the
“complexity iector” of the method.

Method

JSP 2 3 3 8 2,17 9,06

FUSION 2 6 5 15 0,61 16,91

SSA 2 6 4 16 0,97 17,55

MOSES 2 5 9 16 0,66 19,03

OOAD 3 7 8 16 0,68 19,21

Shlaer/Mellor 3 7 9 20 0,56 23,02

OSA 3 9 13 21 0,56 26,29

OMT 3 12 19 26 0,59 34,37

Y ourdon 4 10 6 21 0,75 24,02

RTSA 4 12 11 19 0,64 25,02

OODA 5 19 18 32 1,05 41,34

Table 3: Values obtained from 1 I methods

APPENDIX 4. BOX-PLOTS FOR METHODS

This appendix contains the box-plots for methods in Figures 7 and 8. See Appendix 2 for explanations.

OMT

O$DA

Jsop
OODA

0

.
0 10 20 30

Fig. 7: Box-plots for formulae 13, 14 and 15 for methods

D

Complexity Metrics for Systems Development Methods and Techniques 227

,a 175 1,~ 1,25
Fig. 8: Box-plot for formula 16 for methods

